折板絮凝池的構造是在池內放置一定數量的平行折板或波紋板。主要運用折板的縮放或轉彎造成的邊界層分離而產生的附壁紊流耗能方式,在絮凝池內沿程保持橫向均勻,縱向分散地輸入微量而足夠的能量,有效地提高輸入能量利用率和混凝設備容積利用率,增加液流相對運動,以縮短絮凝時間,提高絮凝體沉降性能。
以來,全國大部分地表水源受污染,水體中藻類等有機物含量明顯增多,常規(guī)混凝處理效果并不理想。絮凝強化時,對因池體自身結構缺陷等因素造成的混凝動力不足、水力條件不當等問題往往不夠重視。
開發(fā)新型、、安全的絮凝劑,深入研究絮凝基礎理論及其控制技術,現已成為一門迅速發(fā)展的科學與技術。絮凝過程是一個復雜的動態(tài)過程,盡管要地表達某一水質、絮凝劑和水流流態(tài)特性因素對絮凝效果的影響還存在很大的困難,但隨著多學科技術集成度的提高以及實際應用的需要,預計折板絮凝研究將在如下方面有所發(fā)展:
為使水流中的顆粒相互碰撞,就使其與水流產生相對運動。水中的顆粒與水流產生相對運動好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時造成的慣性效應來進行凝聚;②改變水流方向。在湍流中充滿著大大小小的渦旋。其中大渦旋能夠使流體進一步的摻混,使顆粒均勻擴散于流體中;同時創(chuàng)造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進顆粒的碰撞,提高絮凝效率。微渦旋理論認為:水中微渦旋尺度與礬花顆粒尺度相近時混凝反應充分。而小渦旋的動力學致因是慣性效應,特別是湍流渦旋的離心慣性效應,由此可見湍流中微小渦旋的離心慣性效應是絮凝的重要動力學致因。
傳統往復式絮凝池在矩形渠道拐彎處速度方向改變?yōu)?80°直接轉變,而圓弧形渠道拐彎處的速度方向則是逐漸變化,變化比矩形拐彎渠道平緩的多。而其圓弧形拐彎渠道能夠產生慣性離心力,進而產生各種微渦旋,根據王紹文教授提出的“慣性效應是絮凝的動力學致因”可知,圓弧形渠道能夠提高絮凝效率,即絮凝效率較高
通過混凝動力學的研究,得到了混凝動力學中速度梯度與時間的關系G=G(0)/1+Kt;并通過擬合得到往復式絮凝池速度梯度的變化規(guī)律近似符合混凝動力學對速度梯度變化的要求;同時參考了往復式絮凝池的新研究成果—將往復式絮凝池轉彎處的矩形渠道變成圓弧形狀,設計出一種的往復式絮凝池。通過數學模擬發(fā)現:優(yōu)化后的往復式絮凝池拐彎處的圓弧形渠道能夠消除傳統往復式絮凝池轉彎處的死水區(qū),而且圓弧形渠道處的水流速度比矩形渠道處的分布均勻,有利于節(jié)約能耗。