字符分割
?
定位出車牌區(qū)域后,由于并不知道車牌中總共有幾個(gè)字符、字符間的位置關(guān)系、每個(gè)字符的寬高等信息,所以,為了車牌類型匹配和字符識(shí)別正確,字符分割是的一步。字符分割的主要思路是,基于車牌的二值化結(jié)果或邊緣提取結(jié)果,利用字符的結(jié)構(gòu)特征、字符間的相似性、字符間間隔等信息,一方面把單個(gè)字符分別提取出來(lái),也包括粘連和斷裂字符等特殊情況的處理;另一方面把寬、高相似的字符歸為一類從而去除車牌邊框以及一些小的噪聲。一般采用的算法有:連通域分析、投影分析,字符聚類和模板匹配等。污損車牌和光照不均造成的模糊車牌仍是字符分割算法所面對(duì)的挑戰(zhàn),有待更好的算法出現(xiàn)并解決以上問(wèn)題。
字符識(shí)別
?
對(duì)分割后的字符的灰度圖像進(jìn)行歸一化處理,特征提取,然后經(jīng)過(guò)機(jī)器學(xué)習(xí)或與字符數(shù)據(jù)庫(kù)模板進(jìn)行匹配,后選取匹配度的結(jié)果作為識(shí)別結(jié)果。目前比較流行的字符識(shí)別算法有:模板匹配法、人工神經(jīng)網(wǎng)絡(luò)法、支持向量機(jī)法和Adaboost分類法等。模板匹配法的優(yōu)點(diǎn)是識(shí)別速度快、方法簡(jiǎn)單,缺點(diǎn)是對(duì)斷裂、污損等情況的處理有一些困難;人工神經(jīng)網(wǎng)絡(luò)法學(xué)習(xí)能力強(qiáng)、適應(yīng)性強(qiáng)、分類能力強(qiáng)但比較耗時(shí);支持向量機(jī)法對(duì)于未見(jiàn)過(guò)的測(cè)試樣本具有更好的識(shí)別能力且需要較少的訓(xùn)練樣本;Adaboost分類法能側(cè)重于比較重要的訓(xùn)練數(shù)據(jù),識(shí)別速度快、實(shí)時(shí)性較高。我國(guó)車牌由漢字、英文字母和阿拉伯?dāng)?shù)字3種字符組成,且具有統(tǒng)一的樣式,這也是識(shí)別過(guò)程的方便之處。但由于車牌很容易受外在環(huán)境的影響,出現(xiàn)模糊、斷裂、污損字符的情況,如何提高這類字符和易混淆字符的識(shí)別率,也是字符識(shí)別的難點(diǎn)之一。易混淆字符包括:0與D、0與Q、2與Z、8與B、5與S、6與G、4與A等。
個(gè)人停車車庫(kù)
?
可能有不少人都有了屬于自己的私人車庫(kù),就會(huì)有很多的個(gè)人的車庫(kù),直接讓車庫(kù)門還有車牌識(shí)別系統(tǒng)之間進(jìn)行聯(lián)動(dòng),只需要將自己的車開(kāi)到門前,車庫(kù)的門就會(huì)自動(dòng)打開(kāi),非常的方便有,比較常見(jiàn)的就是用車庫(kù)滑升門或者是渦輪硬質(zhì)快速卷簾門來(lái)配合車牌識(shí)別系統(tǒng)。