對(duì)于集水槽的樁基布置,傳統(tǒng)的豎向荷載平均法計(jì)算出的樁數(shù)偏多,不易準(zhǔn)確計(jì)算出樁承受的水平力。由集水槽結(jié)構(gòu)形式及受力特點(diǎn)分析可以看出,集水槽各部分構(gòu)件之間是相互協(xié)同作用,共同承受集水槽內(nèi)水壓力及其他荷載。平面假定簡(jiǎn)化計(jì)算只能顧此失彼,不能進(jìn)行整體計(jì)算。因此,為準(zhǔn)確真實(shí)地模擬集水槽結(jié)構(gòu)整體受力的特性,滿(mǎn)足結(jié)構(gòu)優(yōu)化設(shè)計(jì)的目的,集水槽的結(jié)構(gòu)設(shè)計(jì)有必要采用三維有限元整體分析計(jì)算。
以重慶地區(qū)某工程高位收水冷卻塔中央豎井左側(cè)集水槽進(jìn)行有限元三維建模,進(jìn)行有限元整體結(jié)構(gòu)計(jì)算。集水槽底板、側(cè)壁采用Shell181 三維殼單元,暗框架柱、框架頂梁、拉梁,承臺(tái)梁及灌注樁均采用Bea m188 三維梁?jiǎn)卧?。Shell181 及Bea m188 單元能很好地模擬集水槽各部分構(gòu)件。同時(shí),在后處理時(shí)能提取集水槽側(cè)壁、底板、暗框架柱及梁的彎矩、剪力及軸力,方便直接用于結(jié)構(gòu)設(shè)計(jì),進(jìn)行配筋計(jì)算。三維模型中shell181 殼單元共有7342 個(gè),Bea m188 梁?jiǎn)卧灿?jì)782 個(gè)。
集水槽有限元分析時(shí)分三種工況設(shè)計(jì):
工況1 :集水槽修建完成后,未投入運(yùn)行,僅受風(fēng)荷載。
工況2:集水槽修建完成后,投入正常運(yùn)行,不受風(fēng)荷載。
工況3:集水槽修建完成后,投入正常運(yùn)行,受風(fēng)荷載。
內(nèi)力分析中,取以上3 種工況中不利組合進(jìn)行結(jié)構(gòu)設(shè)計(jì)。
在上述荷載及工礦組合下,采用ANSYS 有限元軟件進(jìn)行靜力計(jì)算,通過(guò)后處理后便能對(duì)集水槽各部分構(gòu)件進(jìn)行內(nèi)力分析及結(jié)構(gòu)設(shè)計(jì)。集水槽內(nèi)力分析可以分為集水槽壁板和暗框架( 包括暗框架柱、暗框架頂梁、拉梁及承臺(tái)梁)。
水槽壁板的水平與豎向彎矩圖類(lèi)似于連續(xù)梁,但與連續(xù)梁彎矩不同之處在于,集水槽壁板同時(shí)受拉力,且集水槽水平向的拉力遠(yuǎn)大于豎向所受拉力。水平向大彎矩為-258 kN · m/m,大拉力為687 kN/m ;豎向大彎矩為465 kN · m/m,大拉力為113 kN/m。因此,集水槽壁板應(yīng)按拉彎構(gòu)件進(jìn)行配筋計(jì)算。
對(duì)于集水槽樁基而言,三維有限元仿真計(jì)算,能準(zhǔn)確計(jì)算出每根樁的樁頂豎向力及水平力,進(jìn)行樁基優(yōu)化布置和選型設(shè)計(jì)。