銠粉回收,廢電鍍液中銠的離子交換回收
電子行業(yè)含銠電鍍廢液(Rh3? 50-200mg/L)傳統(tǒng)處理方式回收率不足60%。日本田中貴金屬研發(fā)的SC-1型螯合樹脂,在pH=2.5時(shí)對Rh3?吸附容量達(dá)185mg/g,是普通陽離子樹脂的6倍。工業(yè)化應(yīng)用顯示:采用雙柱串聯(lián)系統(tǒng),先用HCl洗滌去除Cu2?/Ni2?,再用10%硫脲溶液解吸銠,終回收率91.3%。值得注意的是,樹脂再生需使用5% HNO?溶液,設(shè)備采用哈氏合金C-276材質(zhì)防腐。
銠粉回收,火法冶金回收銠粉的工藝優(yōu)化
傳統(tǒng)電弧爐熔煉存在能耗高(每噸耗電5000kWh)、銠揮發(fā)損失(約5%)等問題。現(xiàn)代改進(jìn)方案包括:
等離子熔煉:采用非轉(zhuǎn)移弧等離子炬(溫度達(dá)8000℃),熔煉時(shí)間縮短至1小時(shí),銠回收率提高至97%;
添加劑優(yōu)化:加入硼砂(Na2B4O7)降低熔渣粘度,使銠沉降更充分;
廢氣處理:安裝釕催化劑(Ru/Al2O3)將揮發(fā)的Rh2O3還原回收。
南非Lonmin公司通過余熱發(fā)電系統(tǒng),使每噸物料能耗降低至2800kWh,年節(jié)省成本120萬美元。
銠粉回收,納米銠粉回收的特殊性
納米銠(粒徑<100nm)因表面能高,易氧化或團(tuán)聚?;厥諘r(shí)需在浸出階段添加聚乙烯吡咯烷酮(PVP)作為分散劑,防止Rh納米顆粒聚合。美國NanoSphere公司的專利技術(shù)采用超臨界CO?干燥法,從廢燃料電池催化劑中回收的納米銠比表面積仍保持80m2/g以上。但納米級銠的過濾困難,需采用陶瓷膜錯(cuò)流過濾系統(tǒng)(孔徑0.1μm),投資成本比傳統(tǒng)工藝高40%。
銠粉回收,銠催化劑的失效機(jī)制與回收適配性
汽車催化劑中銠的失效主因是高溫?zé)Y(jié)(>800°C導(dǎo)致Rh顆粒團(tuán)聚)或硫/磷中毒(形成Rh?S?)。燒結(jié)廢料適合火法回收,而中毒廢料需預(yù)氧化焙燒(500°C通空氣)解除硫化物。日本TANAKA公司的研究表明,失效催化劑經(jīng)硝酸預(yù)清洗后,銠浸出率可從75%提升至92%。但陶瓷載體(堇青石)的酸蝕問題需控制浸出時(shí)間<4小時(shí),否則硅溶膠會(huì)污染溶液。
銠粉回收,銠碳催化劑再生技術(shù)經(jīng)濟(jì)分析
石化行業(yè)廢銠碳催化劑(Rh 0.5-1.2wt%)傳統(tǒng)處理方式為直接焚燒,導(dǎo)致銠損失3-5%。中石油新開發(fā)的超臨界CO?清洗技術(shù)(60℃、25MPa)可脫除99%有機(jī)污染物,催化劑活性恢復(fù)至新鮮劑的85%。成本對比顯示:
焚燒法:銠回收成本¥420/g
超臨界法:綜合成本¥280/g
山東某企業(yè)應(yīng)用該技術(shù)后,年減少銠采購量35kg,節(jié)省成本1.2億元。但需注意CO?系統(tǒng)壓力容器需每季度進(jìn)行聲發(fā)射檢測。
銠粉回收,高溫合金廢料中銠的火法富集
航空渦輪葉片含銠0.3-0.8%,俄羅斯VSMPO公司采用電弧爐氧化熔煉(1600℃)使銠富集在鎳锍相。技術(shù)關(guān)鍵:添加FeS降低熔渣粘度(控制在0.5Pa·s),銠捕集率從70%提升至93%。X射線衍射分析顯示,佳操作條件下形成的(Ni,Fe,Rh)?S?相可攜帶92%的銠。該工藝每噸廢料耗電3800kWh,但產(chǎn)出的銠鎳陽極泥價(jià)值可達(dá)原料的15倍。需配套SO?回收制酸系統(tǒng)以滿足環(huán)保要求。