銥粉回收在燃料電池催化劑中的應(yīng)用
質(zhì)子交換膜燃料電池(PEMFC)中,銥基催化劑是電解水制氫的核心材料。每兆瓦電解槽需消耗0.5-1.5公斤銥粉,而全球氫能產(chǎn)業(yè)規(guī)劃到2030年需數(shù)千噸銥。由于銥資源有限,從廢棄催化劑中回收銥粉成為焦點。目前主流工藝包括酸溶解-沉淀法,回收率可達(dá)95%,但如何降低氯銥酸處理中的污染仍是技術(shù)難點。
銥粉回收的環(huán)保挑戰(zhàn)與解決方案
傳統(tǒng)銥回收多采用氰化法,易產(chǎn)生有毒廢水。新興技術(shù)如超臨界流體萃?。⊿C-CO?)可減少污染,但成本較高。歐盟新法規(guī)要求回收企業(yè)廢水銥殘留低于0.1ppm,推動行業(yè)向生物吸附(如真菌菌絲提?。┑染G色工藝轉(zhuǎn)型。
銥粉回收納米化處理對催化劑性能的提升
將回收銥粉(粒徑1-5μm)通過高能球磨或化學(xué)還原法納米化(50-100nm),可使其比表面積從2m2/g增至35m2/g。在質(zhì)子交換膜電解槽中,納米銥催化劑活性提升4倍,單位制氫銥耗從1.2g/kW降至0.3g/kW。德國Heraeus開發(fā)的“超分散銥黑”技術(shù),2023年已實現(xiàn)量產(chǎn),每公斤納米銥粉溢價達(dá)12萬美元(常規(guī)銥粉6萬美元)。
銥納米顆粒的離心富集 銥粉回收技術(shù)
3D打印廢液中分散的銥納米顆粒(5-20nm)通過速離心(50,000rpm,30分鐘)富集,結(jié)合聚乙烯亞胺絮凝劑,回收率從60%提升至95%。以色列NanoTech公司年處理廢液1,000噸,銥純度99.8%。
銥銠回收混合氯化物的選擇性沉淀
汽車催化劑浸出液含IrCl?與RhCl?,加入硫脲(摩爾比1:1.2)沉淀銥,再調(diào)節(jié)pH至8.5沉淀銠。比利時Umicore實現(xiàn)銥銠分離效率99.2%,單線年處理量200噸。
鋰電池正極材料回收中的銥回收元素檢測
部分高鎳三元鋰電池(NCM811)使用銥摻雜(0.01%-0.05%)提升循環(huán)穩(wěn)定性。檢測需先通過微波消解溶解正極片,再用電感耦合等離子體質(zhì)譜(ICP-MS)分析銥含量,檢測限低至0.001ppm。2023年中國動力電池回收白皮書指出,每噸NCM廢料可提取0.3-1.2克銥,但現(xiàn)有回收線普遍未配置銥富集模塊,導(dǎo)致年流失量超500公斤。
高溫合金中銥化合物的氯化揮發(fā)
航空渦輪葉片廢料(含Ir 0.5%)在流化床反應(yīng)器中通入Cl?(800°C),生成氣態(tài)IrCl?(升華點300°C),冷凝后純度99.3%。俄羅斯VSMPO-AVISMA公司采用該技術(shù),銥回收成本比濕法低55%。
銥回收有機(jī)廢液的焚燒灰化提純
OLED生產(chǎn)廢液含銥配合物(如Ir(MDQ)?(acac)),經(jīng)回轉(zhuǎn)窯焚燒(1,200°C)灰化后,銥以IrO?形式富集,酸浸提純至99.95%。韓國LG Display年回收銥180公斤,能耗降低40%
12年