好的絮凝效果不僅需要大量的顆粒碰撞,還需要控制顆粒進行合理有效的碰撞,使顆粒聚集起來。速度梯度是絮凝過程中常用的控制動力學因素。根據(jù)絮凝動力學理論得知,絮凝過程中的速度梯度值是逐漸減小的;而且開始時刻的速度梯度值要求能與混合階段銜接上,所以一般要求較大。這時的絮凝也要求接觸和碰撞,但是由微渦旋理論可知要求的水力半徑要適合于自身的直徑,才能發(fā)生有效碰撞。理論上,攪拌強度越大,速度梯度越大,相互接觸碰撞的機會越多。但攪拌強度大(G值大),水流的剪切力就大,松散的絮體受到水流剪切會二次斷開成為小絮體。因此要求攪拌的強度(也就是速度梯度)隨著絮凝的進行而逐漸變小。整個混凝的過程中,G值是遞減的。但是速度梯度遞減規(guī)律,國內外的還沒有定論。
圓弧形渠道能夠減小渠道轉彎處的速度,減少能耗。而且,圓弧形渠道能夠產(chǎn)生很多復雜的渦旋結構,提高絮凝效率。通過兩個方案中轉彎處X 方向速度的對比證明,圓弧形拐彎往復式絮凝器的速度梯度變化規(guī)律更加合理,混凝效果更好。
池的圓弧形轉彎渠道改變了矩形渠道轉彎處180°速度方向變化帶來的能耗,降低了能耗;同時圓弧形渠道處的水流方向是逐漸變化的,從而產(chǎn)生慣性離心力,進而產(chǎn)生大量微渦旋,提高了絮凝效率 。