產(chǎn)品別名 |
導(dǎo)熱系數(shù)測定儀 |
面向地區(qū) |
全國 |
試件安裝到位后電子自動顯示報警,本司技術(shù), 增大了適用試件范圍,操作方便, 減小了人為誤差, 測量準(zhǔn)確性大大提高;其他大多數(shù)公司采用絲杠或者線性導(dǎo)軌, 對試件要求高, 張緊力不易控制. 容易產(chǎn)生人為誤差。全部測量過程電腦控制, 人機(jī)界面良好.操作簡單; 全部采用傻瓜型程序, 很多同類產(chǎn)品采用單片機(jī)控制, 已經(jīng)不符合現(xiàn)代測量的需求。
導(dǎo)熱系數(shù)是指在穩(wěn)定傳熱條件下,1m厚的材料,兩側(cè)表面的溫差為1度(K,℃),在一定時間內(nèi),通過1平方米面積傳遞的熱量,單位為瓦/米·度 (W/(m·K),此處為K可用℃代替)。導(dǎo)熱系數(shù)是建筑材料重要的熱濕物性參數(shù)之一,與建筑能耗、室內(nèi)環(huán)境及很多其他熱濕過程息息相關(guān)。
隨著溫度的升高或含濕量的增大,所測5種典型建筑材料的導(dǎo)熱系數(shù)都呈增大的趨勢。下面從微觀機(jī)理上對此加以分析。對多孔材料而言,當(dāng)其受潮后,液態(tài)水會替代微孔中原有的空氣;而在常溫常壓下,液態(tài)水的導(dǎo)熱系數(shù)(約為0.59W/(m·K))遠(yuǎn)大于空氣的導(dǎo)熱系數(shù)(約為0.026W/(m·K)),因此,含濕材料的導(dǎo)熱系數(shù)會大于干燥材料的導(dǎo)熱系數(shù),且含濕量越高,導(dǎo)熱系數(shù)也越大。若在低溫下水分凝結(jié)成冰,由于冰的導(dǎo)熱系數(shù)高達(dá)2.2W/(m·K)),因此材料整體的導(dǎo)熱系數(shù)也將增大。
與受潮帶來的影響不同,溫度升高會引起分子熱運(yùn)動的加快,促進(jìn)固體骨架的導(dǎo)熱及孔隙內(nèi)流體的對流傳熱。此外,孔壁之間的輻射換熱也會因?yàn)闇囟鹊纳叨訌?qiáng)。若材料含濕,則溫度梯度還可能造成重要影響:溫度梯度將形成蒸汽壓梯度,使水蒸氣從高溫側(cè)向低溫側(cè)遷移;在特定條件下,水蒸氣可能在低溫側(cè)發(fā)生冷凝,形成的液態(tài)水又將在毛細(xì)壓力的驅(qū)動下從低溫側(cè)向高溫側(cè)遷移。如此循環(huán)往復(fù),類似于熱管的強(qiáng)化換熱作用,使材料表現(xiàn)出來的導(dǎo)熱系數(shù)明顯增大。
理論上,從物質(zhì)微觀結(jié)構(gòu)出發(fā),以量子力學(xué)和統(tǒng)計力學(xué)為基礎(chǔ),通過研究物質(zhì)的導(dǎo)熱機(jī)理,建立導(dǎo)熱的物理模型,經(jīng)過復(fù)雜的數(shù)學(xué)分析和計算可以獲得導(dǎo)熱系數(shù)。但由于理論的適用性受到限制,而且隨著新材料的快速增多,人們迄今仍尚未找到足夠且適用于范圍廣泛的理論方程,因此對于導(dǎo)熱系數(shù)實(shí)驗(yàn)測試方法和技術(shù)的探索,仍是物質(zhì)導(dǎo)熱系數(shù)數(shù)據(jù)的主要來源。
固體是由自由電子和原子組成的,原子又被約束在規(guī)律排列的晶格中。相應(yīng)的,熱能的傳輸是由兩種作用實(shí)現(xiàn)的:自由電子的遷移和晶格的振動波。當(dāng)視為準(zhǔn)粒子現(xiàn)象時,晶格振動子稱為聲子。屬中,電子對導(dǎo)熱貢獻(xiàn)大,而在非導(dǎo)體中,聲子的貢獻(xiàn)起主要作用。常用的固體導(dǎo)熱系數(shù)見表1。在所有固體中,金屬是好的導(dǎo)熱體。屬的導(dǎo)熱系數(shù)一般隨溫度升高而降低。而金屬的純度對導(dǎo)熱系數(shù)影響很大,如含碳為1%的普通碳鋼的導(dǎo)熱系數(shù)為45W/m ·K ,不銹鋼的導(dǎo)熱系數(shù)僅為16 W/m ·K 。